Bayesian quantile regression using random B-spline series prior
نویسندگان
چکیده
A Bayesian method for simultaneous quantile regression on a real variable is considered. By monotone transformation, the response variable and the predictor variable are transformed into the unit interval. A representation of quantile function is given by a convex combination of two monotone increasing functions ξ1 and ξ2 not depending on the prediction variables. In a Bayesian approach, a prior is put on quantile functions by putting prior distributions on ξ1 and ξ2. The monotonicity constraint on the curves ξ1 and ξ2 are obtained through a spline basis expansion with coefficients increasing and lying in the unit interval. A Dirichlet prior distribution is put on the spacings of the coefficient vector. A finite random series based on splines obeys the shape restrictions. The proposed method is extended to multidimensional predictors such that the quantile regression depends on the predictors through an unknown linear combination only. In the simulation study, the proposed approach is compared with a Bayesian method using Gaussian process prior through an extensive simulation study and some other Bayesian approaches proposed in the literature. An application to a data on hurricane activities in the Atlantic region is given. The proposed method is also applied on region-wise population data of USA for the period 1985–2010.
منابع مشابه
Adaptive Bayesian Procedures Using Random Series Priors
We consider a general class of prior distributions for nonparametric Bayesian estimation which uses finite random series with a random number of terms. A prior is constructed through distributions on the number of basis functions and the associated coefficients. We derive a general result on adaptive posterior contraction rates for all smoothness levels of the target function in the true model ...
متن کاملEstimation of Variance Components for Body Weight of Moghani Sheep Using B-Spline Random Regression Models
The aim of the present study was the estimation of (co) variance components and genetic parameters for body weight of Moghani sheep, using random regression models based on B-Splines functions. The data set included 9165 body weight records from 60 to 360 days of age from 2811 Moghani sheep, collected between 1994 to 2013 from Jafar-Abad Animal Research and Breeding Institute, Ardabil province,...
متن کاملBayesian Quantile Regression with Adaptive Elastic Net Penalty for Longitudinal Data
Longitudinal studies include the important parts of epidemiological surveys, clinical trials and social studies. In longitudinal studies, measurement of the responses is conducted repeatedly through time. Often, the main goal is to characterize the change in responses over time and the factors that influence the change. Recently, to analyze this kind of data, quantile regression has been taken ...
متن کاملBayesian Quantile Regression with Adaptive Lasso Penalty for Dynamic Panel Data
Dynamic panel data models include the important part of medicine, social and economic studies. Existence of the lagged dependent variable as an explanatory variable is a sensible trait of these models. The estimation problem of these models arises from the correlation between the lagged depended variable and the current disturbance. Recently, quantile regression to analyze dynamic pa...
متن کاملBayesian Analysis of Time-Varying Quantiles Using a Smoothing Spline
A smoothing spline is considered to propose a novel model for the time-varying quantile of the univariate time series using a state space approach. A correlation is further incorporated between the dependent variable and its one-step-ahead quantile. Using a Bayesian approach, an efficient Markov chain Monte Carlo algorithm is described where we use the multi-move sampler, which generates simult...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 109 شماره
صفحات -
تاریخ انتشار 2017